Moment Matching Calibration of Exponential Lévy Models

Gabjin Oha, SeungHo Yang b, Younhee Leec, and Jaewook Leed

a Pohang Mathematical Institute (PMI)
San 31, Hyoja-Dong, Nam-Gu, Pohang, 790-784, Korea
gq478051@postech.ac.kr

b Department of Industrial and Management Engineering
San 31, Hyoja-Dong, Nam-Gu, Pohang, 790-784, Korea
grimaysh@postech.ac.kr

c Department of Mathematics
San 31, Hyoja-Dong, Nam-Gu, Pohang, 790-784, Korea
lyounhee@postech.ac.kr

d Department of Industrial and Management Engineering
San 31, Hyoja-Dong, Nam-Gu, Pohang, 790-784, Korea
jaewookl@postech.ac.kr

Abstract
We investigate a parametric method for calibrating European option pricing using a six exponential lévy models. We propose a regularization method based on four moments (mean, variance, skewness, and kurtosis) to conquer the ill-posed inverse problem through non-linear least squares. We shows the numerical implementation for the six exponential lévy models using the derivative-free nonlinear optimization algorithm and shown that it is very useful method to resolve the instability of the calibration problem. In particular, we apply our approach to real market data sets of index options and obtained the empirical results significantly.

Keywords
option pricing model, calibration, lévy process

References

